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1. Complex Algebra

The set of complex numbers is

C = {a + bi | b ∈ R, i2 = −1}.
Let z1, z2 ∈ C. Then z1 = x1 + y1i and z2 = x2 + y2i for some x1, y1, x2, y2 ∈ R.
Define addition and multiplication in C by

z1 + z2 = (x1 + x2) + (y1 + y2)i;

z1z2 = (x1x2 − y1y2) + (x1y2 + y1x2)i.

Thus to add or multiply complex numbers, treat i like a variable, add or multiply,
replace i2 with −1, and combine like terms.

We know a number is complex when it is in standard form z = x + yi. That
is, we should be able to identify the real numbers x and y. Always put a complex
number in standard form to complete a computation.

Example 1. Let z = 2 + 5i and w = 3− 7i. Then

z + w = (2 + 5i) + (3− 7i) = (2 + 3) + (5i− 7i) = 5− 2i,

and

zw = (2 + 5i)(3− 7i) = 6− 14i + 15i− 35i2 = 6 + i + 35 = 41 + i.

It is also possible to divide complex numbers, as follows.
If z = x + yi, then conjugate of z is denoted z, and is given by z = x − yi.

This is useful, among other reasons, for complex division. To simplify a fraction of
complex numbers, multiply the numerator and the denominator by the conjugate
of the denominator.

Example 2. Let z = 2 + 5i and w = 3− 7i. Then

z

w
=

2 + 5i

3− 7i
=

(2 + 5i)(3 + 7i)
(3− 7i)(3 + 7i)

=
6 + 14i + 15i + 35i2

9 + 21i− 21i− 49i2
=
−29 + 29i

58
= −1

2
+

1
2
i.
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2. Complex Geometry

2.1. Complex Numbers as Vectors. Let z = x + iy be an arbitrary complex
number. The real part of z is <(z) = x. The imaginary part of z is =(z) = y. We
view R as the subset of C consisting of those elements whose imaginary part is zero.

We graph complex number on the xy-plane, using the real part as the first
coordinate and the imaginary part as the second coordinate. This sets up a bijective
(one-to-one and onto) correspondence C ↔ R2. So just as the real numbers are
viewed geometrically as a line, the complex numbers are viewed geometrically as a
plane, typically referred to as the complex plane.

Under this interpretation, the set C may be identified with the set of all vectors
in R2. That is, if z = x + yi ∈ C, z corresponds to the vector 〈x, y〉.

2.2. Geometric Interpretation of Complex Addition. Let z1 = x1 + y1i and
z2 = x2 + y2i. Then

z1 + z2 = (x1 + x2) + (y1 + y2)i;
since the corresponding vector sum is

〈x1, y1〉+ 〈x2, y2〉 = 〈x1, x2, y1, y2〉,
we see that complex addition corresponds to vector addition. Thus the geometric
interpretation of complex addition is vector addition.

Similarly, let t ∈ R and z = x + yi. Then t = t + 0i is a complex number, and

tz = (t + 0i)(x + yi) = tx + tyi;

the corresponding scalar multiplication is

t〈x, y〉 = 〈tx, ty.

Thus the geometric interpretation of multiplying a real number times a complex
number is scalar multiplication.

3. Complex Conjugation

Seeing complex numbers are vectors immediately gives us the notions of the
length and angle of a complex number.

The modulus of z is
|z| =

√
x2 + y2.

This is the length of z as a vector.
The angle of z, denoted by ∠(z), is the angle between the vectors (1, 0) and (x, y)

in the real plane R2; this is well-defined up to a multiple of 2π.
Let z = x + iy be an arbitrary complex number. The conjugate of z is

z = x− iy.

This is the mirror image of z under reflection across the real axis. There are a
number of identities which involve complex conjugation.

(a) z + z = (x + iy) + (x− iy) = 2x = 2<(z)
(b) z − z = ((x + iy)− (x− iy) = 2yi = 2=(z)i
(c) zz = (x + iy)(x− iy) = x2 + y2 = |z|2

(d) z
z = z2

zz = z2

|z|2 =
( z

|z|

)2
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3.1. Geometric Interpretation of Complex Multiplication. Let r = |z| and
θ = ∠(z). Then x = r cos θ and y = r sin θ. Define a function

cis : R → C by cis(θ) = cos θ + i sin θ.

Then z = r cis(θ); this is the polar representation of z. Note that z
|z| = cis θ.

Recall the trigonometric formulae for the cosine and sine of the sum of angles:

cos(A+B) = cos A cos B−sinA sinB and sin(A+B) = cos A sinB+sinA cos B.

Let z1 = r1 cis(θ1) and z2 = r2 cis(θ2). Then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

= r1r2 cis(θ1 + θ2).

Thus the geometric interpretation of complex multiplication is:
(a) The radius of the product is the product of the radii;
(b) The angle of the product is the sum of the angles.

Example 3. Let f : C → C be given by f(z) = 2z. Then f dilates the complex
plane by a factor of 2.

Example 4. Let f : C → C be given by f(z) = iz. Then f rotates the complex
plane by 90 degrees.

Example 5. Let f : C → C be given by f(z) = (1 + i)z. Note that |1 + i| =
√

2
and ∠(1+ i) = π

4 . Then f dilates the complex plane by a factors of
√

2 and rotates
it by 45 degrees.

Example 6. Let f : C → C be given by f(z) = az, where a is a fixed complex
number. Then f dilates the plane by a factor of |a| and rotates the plane by an
angle of ∠(a).
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4. Complex Powers and Roots

A special case of complex multiplication is exponentiation by a natural number;
a simple proof by induction shows that

Theorem 1. (DeMoivre’s Theorem)
Let θ ∈ R. Then

(cis θ)n = cis(nθ).

Let z = r cis(θ) and let n ∈ N. Then zn = rn cis(nθ).
The unit circle in the complex plane is

U = {z ∈ C | |z| = 1}.
Note that if u1, u2 ∈ U, then u1u2 ∈ U.

Let ζ ∈ C and suppose that ζn = 1. We call ζ an nth root of unity. If ζm 6= 1
for m ∈ {1, . . . , n− 1}, we call ζ a primitive nth root of unity.

Let ζ = cis( 2π
n ). Then ζn = cis(n 2π

n ) = cis(2π) = 1; one sees that ζ is a primitive
nth root of unity. Thus primitive roots of unity exist for every n. As m ranges from
0 to n − 1, we obtain distinct complex numbers ζm, all of which are nth roots of
unity. These are all of the nth roots of unity; thus for each n ∈ N, there are exactly
n distinct nth roots of unity.

If one graphs the nth roots of unity in the complex plane, the points lie on the
unit circle and they are the vertices of a regular n-gon, with one vertex always at
the point 1 = 1 + i0.

Let z = r cis(θ). Then z has exactly n distinct nth roots; they are

n
√

z = ζm n
√

r cis
( θ

n

)
, where ζ = cis

(2π

n

)
and m ∈ {0, . . . , n− 1}.

The algebraic importance of the complex numbers, and the original motivation
for their study, is exemplified by the next theorem. This was first conjectured in the
1500’s, but was not proven until the doctoral dissertation of Carl Friedrich Gauss
in 1799 at the age of 22. Incidentally, was the first to prove the constructibility of
a regular 17-gon, at an even earlier age.

Theorem 2. (The Fundamental Theorem of Algebra)
Every polynomial with complex coefficients has a zero in C.

From this, it follows that every polynomial with complex coefficients factors
completely into the product of linear polynomials with complex coefficients.
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5. Exercises

The rectangular form of a complex number is z = a + bi.
The polar form of a complex number is z = r cis θ.

Exercise 1. Let z = 7− 2i and w = 5 + 3i.
Compute the following, expressed in rectangular form.

(a) z + w
(b) 3z − 8w
(c) zw
(d) z

w
(e) z and |z|

Exercise 2. Find the rectangular and polar forms of all sixth roots of unity.

Exercise 3. Find the rectangular and polar forms of all solutions to the equation
z6 − 8 = 0.

Exercise 4. Find the rectangular and polar forms of all solutions to the equation
z6 − a = 0, where a =

√
3 + i.

Exercise 5. Find all complex solutions to the equation z9 − 1 = 0.

Exercise 6. Find all complex solutions to the equation z5 = i.

Exercise 7. Find all complex numbers z such that z5 = 32.

Exercise 8. Find all complex numbers z such that z3 = 1 + i
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